Planetary geologic maps are crucial tools for understanding the geological features and processes of solid bodies in the Solar System. Over the past six decades, best practices in planetary geologic mapping have emphasized clear and objective observation, geological interpretation, multi‐sensor fusion, and iterative revision of maps based on new data. We summarize here four ways in which maps serve as indispensable instruments for scientific investigation, from enhancing observations to interrogating surface processes. With respect to space exploration, we underscore the role of planetary geologic maps as tools to link testable, hypothesis‐driven science to exploration goals and provide actionable information for hazard identification, resource evaluation, sample collection, and potential infrastructure development. To further advance the field of planetary geologic mapping, international collaboration is essential. This includes sharing data and maps through FAIR (findable, accessible, interoperable, and reusable) platforms, establishing standardized mapping practices, promoting diverse nomenclature, and fostering continued cooperation in space exploration.