“…Synthetic faulty data were used to develop support vector machine (SVM) models for single and multiple FDD in air handling units (AHU), centrifugal chillers and other HVAC equipment/systems [7,[34][35][36][37][38][39][40]. Support vector regression (SVR) models were applied for single FDD [41][42][43][44][45]. b.…”
Detection and diagnosis of the malfunction of the heating, ventilation, and air conditioning (HVAC) systems result in more energy efficient systems with a higher level of indoor comfort. The information from the system combined with the artificial intelligence methods contributes to powerful fault detection and diagnosis. The paper presents a novel method for the detection and diagnosis of multiple dependent faults in an air handling unit (AHU) of HVAC system of an institutional building during heating season. The proposed method guided the search for faults, by using the information and operation flow between sensors. Support vector regression (SVR) models, developed from building automation system (BAS) trend data, predicted air temperature of two target sensors, under normal operation conditions without known problems. The fault symptom was detected when the residual of measured and predicted values exceeded the threshold. The recurrent neural network (RNN) models predicted the normal operation values of regressor sensors, which were compared with measurements, as the first step for the identification of fault symptoms. Rule-based models were used for fault diagnosis of sensors or equipment. Results from a case study of an existing building showed the quality of proposed method for the detection and diagnosis of the multiple dependent faults.
“…Synthetic faulty data were used to develop support vector machine (SVM) models for single and multiple FDD in air handling units (AHU), centrifugal chillers and other HVAC equipment/systems [7,[34][35][36][37][38][39][40]. Support vector regression (SVR) models were applied for single FDD [41][42][43][44][45]. b.…”
Detection and diagnosis of the malfunction of the heating, ventilation, and air conditioning (HVAC) systems result in more energy efficient systems with a higher level of indoor comfort. The information from the system combined with the artificial intelligence methods contributes to powerful fault detection and diagnosis. The paper presents a novel method for the detection and diagnosis of multiple dependent faults in an air handling unit (AHU) of HVAC system of an institutional building during heating season. The proposed method guided the search for faults, by using the information and operation flow between sensors. Support vector regression (SVR) models, developed from building automation system (BAS) trend data, predicted air temperature of two target sensors, under normal operation conditions without known problems. The fault symptom was detected when the residual of measured and predicted values exceeded the threshold. The recurrent neural network (RNN) models predicted the normal operation values of regressor sensors, which were compared with measurements, as the first step for the identification of fault symptoms. Rule-based models were used for fault diagnosis of sensors or equipment. Results from a case study of an existing building showed the quality of proposed method for the detection and diagnosis of the multiple dependent faults.
“…Historic energy demand [33,34,37,39,68,71,82,89,90,101,107,108,111,131,147,163,175,178,229,236,263,285,331,340,346,349,356,361,365,396,398,425,442,449,478] Weather data [37,39,68,82,89,101,107,147,163,175,183,229,263,340,349,356,396,...…”
In this article, a systematic literature review of 419 articles on energy demand modeling, published between 2015 and 2020, is presented. This provides researchers with an exhaustive overview of the examined literature and classification of techniques for energy demand modeling. Unlike in existing literature reviews, in this comprehensive study all of the following aspects of energy demand models are analyzed: techniques, prediction accuracy, inputs, energy carrier, sector, temporal horizon, and spatial granularity. Readers benefit from easy access to a broad literature base and find decision support when choosing suitable data-model combinations for their projects. Results have been compiled in comprehensive figures and tables, providing a structured summary of the literature, and containing direct references to the analyzed articles. Drawbacks of techniques are discussed as well as countermeasures. The results show that among the articles, machine learning (ML) techniques are used the most, are mainly applied to short-term electricity forecasting on a regional level and rely on historic load as their main data source. Engineering-based models are less dependent on historic load data and cover appliance consumption on long temporal horizons. Metaheuristic and uncertainty techniques are often used in hybrid models. Statistical techniques are frequently used for energy demand modeling as well and often serve as benchmarks for other techniques. Among the articles, the accuracy measured by mean average percentage error (MAPE) proved to be on similar levels for all techniques. This review eases the reader into the subject matter by presenting the emphases that have been made in the current literature, suggesting future research directions, and providing the basis for quantitative testing of hypotheses regarding applicability and dominance of specific methods for sub-categories of demand modeling.
“…Machine learning, a subfield of artificial intelligence (AI), in contrast typically applies an algorithmic approach (which may non-linearly transform the data), in order to provide a forecast [6]. Many such algorithms have shown to be effective for forecasting and include decision trees [7], random forest [8,9], gradient boosting machines [10], k-nearest neighbors [11], case-based reasoning [12], support vector machines [13], etc.…”
During the past century, energy consumption and associated greenhouse gas emissions have increased drastically due to a wide variety of factors including both technological and population-based. Therefore, increasing our energy efficiency is of great importance in order to achieve overall sustainability. Forecasting the building energy consumption is important for a wide variety of applications including planning, management, optimization, and conservation. Data-driven models for energy forecasting have grown significantly within the past few decades due to their increased performance, robustness and ease of deployment. Amongst the many different types of models, artificial neural networks rank among the most popular data-driven approaches applied to date. This paper offers a review of the studies published since the year 2000 which have applied artificial neural networks for forecasting building energy use and demand, with a particular focus on reviewing the applications, data, forecasting models, and performance metrics used in model evaluations. Based on this review, existing research gaps are identified and presented. Finally, future research directions in the area of artificial neural networks for building energy forecasting are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.