Intelligent solar tracking systems to track the trajectory of the sun across the sky has been actively studied and proposed nowadays. Several low performance intelligent solar tracking systems have been designed and implemented. Multilayer perceptron (MLP) is one of the common controllers that used to drive solar tracking systems. However, when the input data are complex for neural network, neural network would not well explain the relationship between these data. Thus, it performed worse than when the input data are simple. Using a premapping of relationship between samples of data as input to neural network along with the original input data could probably a strong guide to help neural network to reach the desired goal and predict the output variables faster and more accurate. It is found that using the output of logistic regression as input to neural network would faster the process of finding the predicted output by neural network. Thus, this study aims to propose new efficient and low complexity single and dual axis solar tracking systems by integrating supervised logistic regression (LR) and supervised MLP or cascade multilayer perceptron (CMLP). LR models are trained by using one of unsupervised clustering techniques (k-means, fuzzy c-means, and hierarchical clustering algorithms). The