Purpose
Multilevel inverter (MLI) is a prevailing sensible alternative to two-level inverters that offer a high-quality output voltage waveform, wherein the multiple input direct current (DC) levels are established by using isolated DC sources, batteries and renewable energy sources. The purpose of this paper is to develop MLI to offer lower total harmonic distortion (THD), higher output voltage levels and reduced switching components for high power applications.
Design/methodology/approach
In this paper, a new tapped sources stack succored modified HX bridge MLI (TSSSMHXBMLI) topology is proposed which includes two modules, such as tapped sources stack (TSS) and modified HX bridge inverter, which perform their function in a single stage. Also, this paper outlines the formulaic implementation of the multicarrier/sub-harmonic pulse width modulation (MCPWM/SHPWM) in a Xilinx Spartan3E-500 field programmable gate array (FPGA) is suitable for the developed MLI.
Findings
The feasibility of the suggested topology is well proved by both simulation and experiment results.
Practical implications
This paper examines a new topology of TSSSMHXBMLI with a view to minimize total count of switching components against basic MLI topologies. The operating sequence of the suggested TSSSMHXBMLI topology is verified with the simulation study followed by an experimental investigation.
Originality/value
The simulation and experimental results of suggested MLI topology reveals to obtain lower THD, higher output voltage levels and reduced switching components for high power applications.