Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
During most hydraulic fracturing operations, coiled tubing (CT) is used as a contingency option for well cleanup in the case of sand screenout. An alternative improvised solution is presented introducing a single-shot circulating valve into the frac string to help minimize additional resources related to CT procedures, thus reducing costs and enhancing operational performance. The tool is positioned above the retrievable frac packer to provide circulation capability to reverse out proppant sand without well intervention activities. Setup, operating procedures, concept evaluation, and performance of the single-shot circulating valve used to reverse proppant sand from the frac string are discussed. A single-shot circulating valve in the frac string provides additional liquid flow pass for recovering excess sand inside the frac string to the surface. Intensive laboratory testing was performed to evaluate tool function in worst-case scenarios of a highly deviated well with proppant sand packed above the circulating ports. During field operations, activated pressure tolerance was defined by incorporating rupture-disk reliability and temperature decrement effects during hydraulic fracturing to help ensure the operating pressure did not impair the fracturing operation or well integrity. Lastly, a cleanout procedure was meticulously planned to help prevent pipe sticking situations caused by sand fallout in the annulus. The single-shot circulating valve, typically deployed during drillstem testing (DST) operations, proved successful circulating out the proppant-sand column packed inside the tool during both laboratory testing and field operations. With precise hydrostatic pressure calculations, the burst pressure was reliable, meaning no premature activation occurred, and the rupture-disk burst within the designed surface pressure tolerance of ±400 psi. During reverse circulation, pumping pressure was maintained within an acceptable range (the maximum pumping rate across the circulating ports was 8 bbl/min) and no visual tool damage occurred. Deploying comprehensive engineering and operating procedures (e.g., defining the operating envelope to maintain a higher casing pressure than drillpipe pressure), the frac string and retrievable downhole frac packer were free of sand and successfully retrieved, even during a screenout scenario. Based on the success of the prolonged two-year fracturing operations, the proposed approach is appropriate for fracturing using a single-shot circulating valve as the primary contingency equipment during screenout, replacing CT intervention for this application. This alternative method resulted in improved safety and operational efficiency by eliminating on-rig CT operations when screenout pressure is trapped in the string in addition to significant cost savings attributed to eliminating the extra standby resources of a CT package. This innovative approach, which applies functions of a downhole well-testing tool during hydraulic fracturing, requires both circumspect engineering consideration to define a proper operating envelope and comprehensive operational procedures to help mitigate operational risks.
During most hydraulic fracturing operations, coiled tubing (CT) is used as a contingency option for well cleanup in the case of sand screenout. An alternative improvised solution is presented introducing a single-shot circulating valve into the frac string to help minimize additional resources related to CT procedures, thus reducing costs and enhancing operational performance. The tool is positioned above the retrievable frac packer to provide circulation capability to reverse out proppant sand without well intervention activities. Setup, operating procedures, concept evaluation, and performance of the single-shot circulating valve used to reverse proppant sand from the frac string are discussed. A single-shot circulating valve in the frac string provides additional liquid flow pass for recovering excess sand inside the frac string to the surface. Intensive laboratory testing was performed to evaluate tool function in worst-case scenarios of a highly deviated well with proppant sand packed above the circulating ports. During field operations, activated pressure tolerance was defined by incorporating rupture-disk reliability and temperature decrement effects during hydraulic fracturing to help ensure the operating pressure did not impair the fracturing operation or well integrity. Lastly, a cleanout procedure was meticulously planned to help prevent pipe sticking situations caused by sand fallout in the annulus. The single-shot circulating valve, typically deployed during drillstem testing (DST) operations, proved successful circulating out the proppant-sand column packed inside the tool during both laboratory testing and field operations. With precise hydrostatic pressure calculations, the burst pressure was reliable, meaning no premature activation occurred, and the rupture-disk burst within the designed surface pressure tolerance of ±400 psi. During reverse circulation, pumping pressure was maintained within an acceptable range (the maximum pumping rate across the circulating ports was 8 bbl/min) and no visual tool damage occurred. Deploying comprehensive engineering and operating procedures (e.g., defining the operating envelope to maintain a higher casing pressure than drillpipe pressure), the frac string and retrievable downhole frac packer were free of sand and successfully retrieved, even during a screenout scenario. Based on the success of the prolonged two-year fracturing operations, the proposed approach is appropriate for fracturing using a single-shot circulating valve as the primary contingency equipment during screenout, replacing CT intervention for this application. This alternative method resulted in improved safety and operational efficiency by eliminating on-rig CT operations when screenout pressure is trapped in the string in addition to significant cost savings attributed to eliminating the extra standby resources of a CT package. This innovative approach, which applies functions of a downhole well-testing tool during hydraulic fracturing, requires both circumspect engineering consideration to define a proper operating envelope and comprehensive operational procedures to help mitigate operational risks.
Well testing is a proven method for reservoir characterization, which is important for well-completion design, future development strategies, stimulation needs, and determining the commercial feasibility of the reservoir. This paper presents a surface data-acquisition system and its applications for rigless well-testing operations. Drill-stem testing (DST), which is classified as a temporary completion of a well, typically involves a large and complex operation. A key activity during DSTs is collecting downhole pressure and temperature data using gauges at the bottom of the well that monitor pressure changes throughout the operation. Particularly crucial are the shut-in and initial build up, which provide insight into major reservoir properties. While shutting in the well at the bottom reduces the effects of wellbore storage, providing the most accurate downhole measurements, it also requires a rig and numerous personnel to prepare the well and run in hole (RIH) the test string. A rigless DST operation using a surface closure and surface data-acquisition system has been used in several wells to optimize data acquisition recovery as a non-invasive alternative to running downhole pressure gauges for pressure-transient well testing. The effectiveness of the data-acquisition system provides advantages and accountability by avoiding the cost and risk of running equipment downhole and monitoring tests in real-time at surface. The surface gauges acquire high-resolution pressure data at the wellhead during flowing and shut-in, which are then converted to bottomhole conditions using proprietary models. Because this technique is nonintrusive, it can be used to test wells in which downhole gauges are impractical or cost prohibitive, such as highly deviated, horizontal wells with tubing restrictions, sour-gas, high-pressure wells with high bottomhole temperatures, and low-cost evaluations. For mediumto high-permeability formations, a three-day test is typically sufficient to calculate basic near-bore and reservoir properties, including skin, permeability, and initial pressure. Longer tests that track pressure changes to reservoir boundaries can also be used to calculate the reservoir size. The data-acquisition system has proven its efficacy after enabling a low-noise response and low-pressure changes resulting from temperature effects. Based on data provided by the data-acquisition system, the operator designed a well-testing campaign and achieved results typical of those expected using a conventional approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.