Spatial Pattern (SP) Description, Identification, and Application Methodology (SPDIAM) was developed for describing and detecting spatial economic, social, and environmental phenomena and providing basic information technology (IT) artefacts that can be used for the spatial analysis development using GIS technologies. SPDIAM allows urban planning and design practitioners to describe SP in a computerized manner, identify SP automatically, and apply them in the spatial planning and design domain. In this article, we explain the general SP and spatial meta-pattern model, used in SPDIAM, that is based on the theory of Complex Spatial System (CSS), spatial configuration, and spatial capital concepts and is presented using UML diagrams as standard used for visualization of project models from structure and behavior points of views. The practical experiment of describing and identifying 6 basic spatial meta-pattern values is conducted using the new algorithm that combines Space Syntax method, Visibility Graph Analysis (VGA), and VGA measures to create a computer model of space and to quantify its configuration, which can then be used to handle geographic and geometric data associated with attribute information, to perform spatial, mathematical, and statistical calculations and to visualize SP. The results of the experiment show that the model and the algorithm are appropriate for spatial meta-patterns identification, and the best results can be achieved using VGA measure Isovist Compactness. In the future, general SP and the spatial meta-pattern model can be used to describe and identify complex SP and to solve problems in CSS with the help of the spatial meta-pattern values described in this article.