Well logging is performed in oil and gas exploration wells to obtain the physical characteristics of underground formations. Thereafter, these wells are cased. Through-casing logging is important in mature fields and for wells that are cased without logging due to borehole stability issues. Acoustic through-casing logging is a challenging issue due to the strong interference of casing waves in formation waves, especially when the casing and formation are poorly bonded. An acoustic tool with dual-source transmitters is developed, in which an additional transducer is added to suppress casing waves. First, the operation principle and the overall design of the tool are carried out, including the span distance between the two transmitting transducers and the spacing distance between the transmitting transducer and the receiving transducers. Thereafter, a dual-source transmitting circuit is designed to send out two excitation signals of opposite polarities. These signals possess good consistency, high emission power, and precise signal adjustment. Lastly, the tool is tested in cased exploration wells in China. The experiment endings show that about 90% of the casing waves are canceled. By suppressing the casing wave amplitude, the cased-hole acoustic logging can be used commercially to obtain trustworthy formation information.