There is increasing interest in factors that can impede cargo transport by molecular motors inside the cell. While potentially relevant (1), the importance of cargo size and sub-cellular location have received relatively little attention. Here we address these questions taking advantage of the fact that mitochondria—a common cargo—in Drosophila neurons exhibit a wide distribution of sizes. In addition, the mitochondria can be genetically marked with GFP making it possible to visualize and compare their movement in the cell bodies and processes of living cells. Using total internal reflection (TIRF) microscopy coupled with particle tracking and analysis, we quantified transport properties of GFP positive mitochondria as a function of their size and location. In neuronal cell bodies we find little evidence for significant opposition to motion, consistent with a previous study on lipid droplets (2). However, in the processes we observe an inverse relationship between mitochondrial size and velocity and run distances. This can be ameliorated via hypotonic treatment to increase process size, suggesting that motor mediated movement is impeded in this more confined environment. Interestingly, we also observe local mitochondrial accumulations in processes but not in cell bodies. Such accumulations do not completely block transport, but do increase the probability of mitochondria-mitochondria interactions. They are thus particularly interesting in relation to mitochondrial exchange of elements.