We study the phases and phase transition lines of the finite temperature G2 Higgs model. Our work is based on an efficient local hybrid Monte-Carlo algorithm which allows for accurate measurements of expectation values, histograms and susceptibilities. On smaller lattices we calculate the phase diagram in terms of the inverse gauge coupling β and the hopping parameter κ. For κ → 0 the model reduces to G2 gluodynamics and for κ → ∞ to SU (3) gluodynamics. In both limits the system shows a first order confinement-deconfinement transition. We show that the first order transitions at asymptotic values of the hopping parameter are almost joined by a line of first order transitions. A careful analysis reveals that there exists a small gap in the line where the first order transitions turn into continuous transitions or a cross-over region. For β → ∞ the gauge degrees of freedom are frozen and one finds a nonlinear O(7) sigma model which exhibits a second order transition from a massive O(7)-symmetric to a massless O(6)-symmetric phase. The corresponding second order line for large β remains second order for intermediate β until it comes close to the gap between the two first order lines. Besides this second order line and the first order confinement-deconfinement transitions we find a line of monopole-driven bulk transitions which do not interfer with the confinement-deconfinment transitions.