The Pacific Northwest Laboratory (PNL) is conducting research and development studies on technology for immobilization of nuclear wastes. In this report, an overview of stress analysis methods, structural design procedures, and design data is presented for canisters used to package solidified wastes, particularly borosilicate glass. In addition, waste processing, canister materials, fabrication and inspection methods, and performance testing are summarized. Sources of stress in canisters are lifting and handling loads, internal pressure, hightemperature filling operations, transient heating and cooling, differential thermal expansions of canisters and glass, and impact loadings from low-probability accidents. Results of case studies that illustrate applicable methods of stress analyses are presented for these sources of stress. Existing sections of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code are reviewed and found to be applicable to canister fabrication, but the code does not cover many aspects of canister service loadings. Specialized criteria for minimum wall thicknesses to sustain filling stresses are proposed in this report. Results of a test program to measure the creep strength of candidate canister materials are described. Methods to predict residual stresses in the walls of waste canisters are described; predicted residual stress levels agree with measured stress levels. The consequences of these residual stresses are reviewed, and stress-corrosion cracking is identified as the mode of canister failure affected by residual stresses. Canister-closure design is covered in detail, particularly the welding and inspection of the final closure seal-weld. It is shown that the methods of fracture mechanics and fatiguecrack-growth analyses are valuable tools for evaluating the performance of closure welds in the presence of crack-like defects. Canister performance in process trials at PNL shows the ability of canisters to survive high temperatures and loadings during processing. The results of impact tests at PNL show that a suitably designed canister can sustain severe impacts without loss of integrity • iii