2021
DOI: 10.7546/nntdm.2021.27.1.198-207
|View full text |Cite
|
Sign up to set email alerts
|

Catalan transform of the k-Pell, k-Pell–Lucas and modified k-Pell sequence

Abstract: In this study, we present the Catalan transforms of the k-Pell sequence, the k-Pell–Lucas sequence and the Modified k-Pell sequence and examine the properties of the sequences. Then we apply the Hankel transform to the Catalan transforms of the k-Pell sequence, the Catalan transform of the k-Pell–Lucas sequence and the Catalan transform of the Modified k-Pell sequence. Also, we obtain the generating functions of the Catalan transform of the k-Pell sequence, k-Pell–Lucas sequence and Modified k-Pell sequence. F… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
7
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(7 citation statements)
references
References 10 publications
0
7
0
Order By: Relevance
“…• If we replace p = 1, q = k in CH n (ξ, ς), HCH n (ξ, ς) we obtain the Catalan, Hankel transforms for k-Jacobsthal numbers in [23]. • If we replace p = 2, q = k in CH n (ξ, ς), HCH n (ξ, ς), CK n (ξ, ς), HCK n (ξ, ς), we obtain the Catalan, Hankel transforms for k-Pell and k-Pell-Lucas numbers in [24]. • If we replace p = 6ξ, q = −1 in b n (ξ, ς) , we obtain the binomial transforms for balancing polynomials in [30].…”
Section: Discussionmentioning
confidence: 99%
“…• If we replace p = 1, q = k in CH n (ξ, ς), HCH n (ξ, ς) we obtain the Catalan, Hankel transforms for k-Jacobsthal numbers in [23]. • If we replace p = 2, q = k in CH n (ξ, ς), HCH n (ξ, ς), CK n (ξ, ς), HCK n (ξ, ς), we obtain the Catalan, Hankel transforms for k-Pell and k-Pell-Lucas numbers in [24]. • If we replace p = 6ξ, q = −1 in b n (ξ, ς) , we obtain the binomial transforms for balancing polynomials in [30].…”
Section: Discussionmentioning
confidence: 99%
“…e work can be further extended to k− Jacobsthal and Jacobsthal-Lucas numbers and k− Fibonacci and Lucas numbers. [20][21][22][23][24][25][26][27]…”
Section: Discussionmentioning
confidence: 99%
“…As in [16][17][18][19][20][21][22][23], in engineering, science, and technology, the structure of such sequences with generalizations plays a vital signi cance art and architecture. In studying such discipline, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal-Lucas polynomials have shown their signi cance as in [24][25][26][27].…”
Section: Introductionmentioning
confidence: 99%
“…In [13], the author introduced the Catalan transform of a given sequence and its inverse in terms of the Riordan group, and then derive many transformed sequences. By inspired of this work, the Catalan transform has been applied to many sequences; for example [18,[22][23][24][25]. In this section, we defne the quaternion-type Catalan transform and then give the generating function of the quaternion-type Catalan transform of a given sequence a n 􏼈 􏼉.…”
Section: Quaternion-type Catalan Transformsmentioning
confidence: 99%