Co(II)-based metalloradical catalysis has been, for the first time, successfully applied for asymmetric intramolecular C–H alkylation of acceptor/acceptor-substituted diazo reagents. Through the design and synthesis of a new D2-symmetric chiral amidoporphyrin as the supporting ligand, the Co(II)-based metalloradical system, which operates at room temperature, is capable of 1,5-C–H alkylation of α-methoxycarbonyl-α-diazosulfones with a broad range of electronic properties, providing the 5-membered sulfolane derivatives in high yields with excellent diastereoselectivity and enantioselectivity. In addition to complete chemoselectivity toward allylic and allenic C–H bonds, the Co(II)-based metalloradical catalysis for asymmetric C–H alkylation features a remarkable degree of functional group tolerance.