Electrocatalytic
NO reduction to NH3 (NORR)
offers a
prospective approach to attain both harmful NO removal and efficient
NH3 electrosynthesis. Main-group p-block metals are promising
NORR candidates but still lack adequate exploration. Herein, p-block
Sb single atoms confined in amorphous MoO3 (Sb1/a-MoO3) are designed as an efficient NORR catalyst, exhibiting
the highest NH3 yield rate of 273.5 μmol h–1 cm–2 and a NO-to-NH3 Faradaic efficiency
of 91.7% at −0.6 V vs RHE. In situ spectroscopic characterizations
and theoretical computations reason that the outstanding NORR performance
of Sb1/a-MoO3 arises from the isolated Sb1 sites, which can optimize the adsorption of *NO/*NHO to lower
the reaction energy barriers and simultaneously exhibit a higher affinity
to NO than to H2O/H species. Moreover, our strategy can
be extended to prepare Bi1/a-MoO3, showing a
high NORR property, demonstrating the immense potential of p-block
metal single-atom catalysts toward the high-performing NORR electrocatalysis.