The
direct oxidative dehydrogenation of lactates with molecular
oxygen is a “greener” alternative for producing pyruvates.
Here we report a one-pot synthesis of mesoporous vanadia–titania
(VTN), acting as highly efficient and recyclable catalysts for the
conversion of ethyl lactate to ethyl pyruvate. These VTN materials
feature high surface areas, large pore volumes, and high densities
of isolated vanadium species, which can expose the active sites and
facilitate the mass transport. In comparison to homogeneous vanadium
complexes and VOx/TiO2 prepared
by impregnation, the meso-VTN catalysts showed superior activity,
selectivity, and stability in the aerobic oxidation of ethyl lactate
to ethyl pyruvate. We also studied the effect of various vanadium
precursors, which revealed that the vanadium-induced phase transition
of meso-VTN from anatase to rutile depends strongly on the vanadium
precursor. NH4VO3 was found to be the optimal
vanadium precursor, forming more monomeric vanadium species. V4+ as the major valence state was incorporated into the lattice
of the NH4VO3-derived VTN material, yielding
more V4+–O–Ti bonds in the anatase-dominant
structure. In situ DRIFT spectroscopy and density functional theory
calculations show that V4+–O–Ti bonds are
responsible for the dissociation of ethyl lactate over VTN catalysts
and for further activation of the deprotonation of β-hydrogen.
Molecular oxygen can replenish the surface oxygen to regenerate the
V4+–O–Ti bonds.