In this study, we present a novel method for immobilizing Palladium nanoparticles (Pd NPs) onto a polydimethylsiloxane (PDMS) support (Pd NPs@PDMS). To enhance the stability of Pd NPs on the PDMS surface, we functionalized a PDMS thin film with amine groups. The structure and morphology of the resulting Pd NPs@PDMS material were characterized using various techniques, including field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and X‐ray photoelectron spectroscopy (XPS) measurements. Furthermore, we investigated the catalytic performance of the Pd NPs@PDMS nanocatalyst for the reduction of well‐known environmental pollutants, such as 4‐nitrophenol (4‐NP), 2‐nitrophenol (2‐NP), 4‐nitroaniline (4‐NA), Methyl Orange (MO), Methylene Blue (MB), and Congo Red (CR), in the presence of sodium borohydride (NaBH4) at room temperature (RT). Additionally, we explored the application of the prepared nanocatalyst in carbon‐carbon (C−C) coupling reactions, specifically Suzuki Miyaura and Sonogashira reactions. The results obtained in this study demonstrated the high efficiency and environmentally friendly nature of Pd NPs@PDMS as a catalyst for both C−C coupling reactions and the degradation of organic pollutants.