Direct selective oxidation of hydrocarbons to oxygenates by O2 is challenging. Catalysts are limited by the low activity and narrow application scope, and the main focus is on active C−H bonds at benzylic positions. In this work, stable, lead‐free, Cs3Bi2Br9 halide perovskites are integrated within the pore channels of mesoporous SBA‐15 silica and demonstrate their photocatalytic potentials for C−H bond activation. The composite photocatalysts can effectively oxidize hydrocarbons (C5 to C16 including aromatic and aliphatic alkanes) with a conversion rate up to 32900 μmol gcat−1 h−1 and excellent selectivity (>99 %) towards aldehydes and ketones under visible‐light irradiation. Isotopic labeling, in situ spectroscopic studies, and DFT calculations reveal that well‐dispersed small perovskite nanoparticles (2–5 nm) possess enhanced electron–hole separation and a close contact with hydrocarbons that facilitates C(sp3)−H bond activation by photoinduced charges.