Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Outer-shell s 0 /p 0 orbital mixing with d 10 orbitals and symmetry reduction upon cupriphication of cyclic trinuclear trigonal-planar gold(I) complexes are found to sensitize ground-state Cu(I)-Au(I) covalent bonds and near-unity phosphorescence quantum yields. Heterobimetallic Au 4 Cu 2 {[Au 4 (μ-C 2 ,N 3 -EtIm) 4 Cu 2 (μ-3,5-(CF 3 ) 2 Pz) 2 ], (4a)}, Au 2 Cu {[Au 2 (μ-C 2 ,N 3 -BzIm) 2 Cu(μ-3,5-(CF 3 ) 2 Pz)], (1) and [Au 2 (μ-C 2 , N 3 -MeIm) 2 Cu(μ-3,5-(CF 3 ) 2 Pz)], (3a)}, AuCu 2 {[Au(μ-C 2 ,N 3 -MeIm)Cu 2 (μ-3,5-(CF 3 ) 2 Pz) 2 ], (3b) and [Au(μ-C 2 ,N 3 -EtIm)Cu 2 (μ-3,5-(CF 3 ) 2 Pz) 2 ], (4b)} and stacked Au 3 /Cu 3 {[Au(μ-C 2 ,N 3 -BzIm)] 3 [Cu(μ-3,5-(CF 3 ) 2 Pz)] 3 , (2)} form upon reacting Au 3 {[Au(μ-C 2 ,N 3 -(N-R)Im)] 3 ((N-R)Im = imidazolate; R = benzyl/methyl/ethyl = BzIm/MeIm/EtIm)} with Cu 3 {[Cu(μ-3,5-(CF 3 ) 2 Pz)] 3 (3,5-(CF 3 ) 2 Pz = 3,5-bis(trifluoromethyl)pyrazolate)}. The crystal structures of 1 and 3a reveal stair-step infinite chains whereby adjacent dimer-of-trimer units are noncovalently packed via two Au(I)⋯Cu(I) metallophilic interactions, whereas 4a exhibits a hexanuclear cluster structure wherein two monomer-of-trimer units are linked by a genuine d 10 -d 10 polar-covalent bond with ligandunassisted Cu(I)-Au(I) distances of 2.8750(8) Å each-the shortest such an intermolecular distance ever reported between any two d 10 centers so as to deem it a "metal-metal bond" vis-à-vis "metallophilic interaction." Density-functional calculations estimate 35-43 kcal/mol binding energy, akin to typical M-M single-bond energies. Congruently, FTIR spectra of 4a show multiple far-IR bands within 65-200 cm −1 , assignable to v Cu-Au as validated by both the Harvey-Gray method of crystallographic-distance-to-force-constant correlation and dispersive density functional theory computations. Notably, the heterobimetallic complexes herein exhibit photophysical properties that are favorable to those for their homometallic congeners, due to threefold-to-twofold symmetry reduction, resulting in cuprophilic sensitization in extinction coefficient and solid-state photoluminescence quantum yields approaching unity (Φ PL = 0.90-0.97 vs. 0-0.83 for Au 3 and Cu 3 precursors), which bodes well for potential future utilization in inorganic and/or organic LED applications. Here, we show that outer 4s/p (Cu I ) and 6s/p (Au I ) orbitals can admix with the respective valence 3d and 5d orbitals to sensitize a bona fide polar-covalent metal-metal bond between two d 10 centers manifest by two rather short, 2.8750(8) Å, Cu(I)-Au(I) bonds without any ligand-bite-size assistance. The reduced symmetry in this family of complexes is also shown to impart higher extinction coefficients and phosphorescence quantum yields than those attained by the parent homometallic precursor complexes.Heterometallic complexes are remarkable molecules owing to their unique catalytic and optoelectronic properties (2, 3). Heterometallic species involving coinage metals have received immense attention owing to their fascinating structural a...
Outer-shell s 0 /p 0 orbital mixing with d 10 orbitals and symmetry reduction upon cupriphication of cyclic trinuclear trigonal-planar gold(I) complexes are found to sensitize ground-state Cu(I)-Au(I) covalent bonds and near-unity phosphorescence quantum yields. Heterobimetallic Au 4 Cu 2 {[Au 4 (μ-C 2 ,N 3 -EtIm) 4 Cu 2 (μ-3,5-(CF 3 ) 2 Pz) 2 ], (4a)}, Au 2 Cu {[Au 2 (μ-C 2 ,N 3 -BzIm) 2 Cu(μ-3,5-(CF 3 ) 2 Pz)], (1) and [Au 2 (μ-C 2 , N 3 -MeIm) 2 Cu(μ-3,5-(CF 3 ) 2 Pz)], (3a)}, AuCu 2 {[Au(μ-C 2 ,N 3 -MeIm)Cu 2 (μ-3,5-(CF 3 ) 2 Pz) 2 ], (3b) and [Au(μ-C 2 ,N 3 -EtIm)Cu 2 (μ-3,5-(CF 3 ) 2 Pz) 2 ], (4b)} and stacked Au 3 /Cu 3 {[Au(μ-C 2 ,N 3 -BzIm)] 3 [Cu(μ-3,5-(CF 3 ) 2 Pz)] 3 , (2)} form upon reacting Au 3 {[Au(μ-C 2 ,N 3 -(N-R)Im)] 3 ((N-R)Im = imidazolate; R = benzyl/methyl/ethyl = BzIm/MeIm/EtIm)} with Cu 3 {[Cu(μ-3,5-(CF 3 ) 2 Pz)] 3 (3,5-(CF 3 ) 2 Pz = 3,5-bis(trifluoromethyl)pyrazolate)}. The crystal structures of 1 and 3a reveal stair-step infinite chains whereby adjacent dimer-of-trimer units are noncovalently packed via two Au(I)⋯Cu(I) metallophilic interactions, whereas 4a exhibits a hexanuclear cluster structure wherein two monomer-of-trimer units are linked by a genuine d 10 -d 10 polar-covalent bond with ligandunassisted Cu(I)-Au(I) distances of 2.8750(8) Å each-the shortest such an intermolecular distance ever reported between any two d 10 centers so as to deem it a "metal-metal bond" vis-à-vis "metallophilic interaction." Density-functional calculations estimate 35-43 kcal/mol binding energy, akin to typical M-M single-bond energies. Congruently, FTIR spectra of 4a show multiple far-IR bands within 65-200 cm −1 , assignable to v Cu-Au as validated by both the Harvey-Gray method of crystallographic-distance-to-force-constant correlation and dispersive density functional theory computations. Notably, the heterobimetallic complexes herein exhibit photophysical properties that are favorable to those for their homometallic congeners, due to threefold-to-twofold symmetry reduction, resulting in cuprophilic sensitization in extinction coefficient and solid-state photoluminescence quantum yields approaching unity (Φ PL = 0.90-0.97 vs. 0-0.83 for Au 3 and Cu 3 precursors), which bodes well for potential future utilization in inorganic and/or organic LED applications. Here, we show that outer 4s/p (Cu I ) and 6s/p (Au I ) orbitals can admix with the respective valence 3d and 5d orbitals to sensitize a bona fide polar-covalent metal-metal bond between two d 10 centers manifest by two rather short, 2.8750(8) Å, Cu(I)-Au(I) bonds without any ligand-bite-size assistance. The reduced symmetry in this family of complexes is also shown to impart higher extinction coefficients and phosphorescence quantum yields than those attained by the parent homometallic precursor complexes.Heterometallic complexes are remarkable molecules owing to their unique catalytic and optoelectronic properties (2, 3). Heterometallic species involving coinage metals have received immense attention owing to their fascinating structural a...
Heterodinuclear transition‐metal complexes, that is coordination compounds comprising two different transition‐metal atoms, witness growing interest. This development is driven by the incentive to find complexes, which outperform their mononuclear competitors in reactivity and selectivity. It is particularly the close proximity of the two transition‐metal atoms, which promises to promote these favorable interactions denoted as “cooperative”. Therefore, mainly dinuclear complexes with direct metal–metal bonds are discussed in this article. Since the very first report of a heterodinuclear transition‐metal complex in 1960, a repertoire of methodologies for the targeted synthesis has been established. Besides the description of this progress, the focus of the present article is on the discussion of appropriate characterization methods. Typical questions concern the nature of the metal–metal bond as well as the elucidation of mechanistic details of reactions involving the polar metal–metal bonds present in heterodinuclear complexes. Several applications are detailed, in which heterodinuclear complexes either surpass the limitations of mononuclear complexes or even exhibit so far unknown reactivity. So‐called “early–late” complexes represent the most dominant branch in this context, while also “late–late” complexes show fruitful reactivity. Herein, the focus is on transition‐metal‐containing complexes, thus ignoring main‐group elements completely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.