The synthesis of polycyclic compounds is highly valued due to the ubiquitous presence of these structures in pharmaceuticals and natural substances. Cycloaddition reactions are notable as one of the most important reaction classes in chemical synthesis due to their ability to generate polycyclic compounds in a single step using straightforward and easily accessible starting materials. In recent times, visible‐light‐mediated photocatalysis has emerged as a powerful tool for enabling a wide range of transformations. Significant advancements have been achieved in dearomative cycloaddition reactions induced by visible light over the past several years. This review offers an overview of visible‐light‐induced dearomative cycloaddition reactions categorized according to the method of substrate excitation ‐ a) Visible light induced dearomative photocatalytic cycloaddition by Energy Transfer (EnT); b) Visible light induced dearomative cycloaddition by direct excitation; c) Visible light induced dearomative radical cyclization.