The concept of bifunctional catalysis, wherein both partners of a bimolecular reaction are simultaneously activated, is very powerful for designing efficient asymmetric catalysts. Catalytic asymmetric processes are indispensable for producing enantiomerically enriched compounds in modern organic synthesis, providing more economical and environmentally benign results than methods requiring stoichiometric amounts of chiral reagents. Extensive efforts in this field have produced many asymmetric catalysts, and now a number of reactions can be rendered asymmetric. We have focused on the development of asymmetric catalysts that exhibit high activity, selectivity, and broad substrate generality under mild reaction conditions. Asymmetric catalysts based on the concept of bifunctional catalysis have emerged as a particularly effective class, enabling simultaneous activation of multiple reaction components. Compared with conventional catalysts, bifunctional catalysts generally exhibit enhanced catalytic activity and higher levels of stereodifferentiation under milder reaction conditions, attracting much attention as next-generation catalysts for prospective practical applications. In this Account, we describe recent advances in enantioselective catalysis with bifunctional catalysts. Since our identification of heterobimetallic rare earth-alkali metal-BINOL (REMB) complexes, we have developed various types of bifunctional multimetallic catalysts. The REMB catalytic system is effective for catalytic asymmetric Corey-Chaykovsky epoxidation and cyclopropanation. A dinucleating Schiff base has emerged as a suitable multidentate ligand for bimetallic catalysts, promoting catalytic syn-selective nitro-Mannich, anti-selective nitroaldol, and Mannich-type reactions. The sugar-based ligand GluCAPO provides a suitable platform for polymetallic catalysts; structural elucidation revealed that their higher order polymetallic structures are a determining factor for their function in the catalytic asymmetric Strecker reaction. Rational design identified a related ligand, FujiCAPO, which exhibits superior performance in catalytic asymmetric conjugate addition of cyanide to enones and a catalytic asymmetric Diels-Alder-type reaction. The combination of an amide-based ligand with a rare earth metal constitutes a unique catalytic system: the ligand-metal association is in equilibrium because of structural flexibility. These catalytic systems are effective for asymmetric amination of highly coordinative substrate as well as for Mannich-type reaction of alpha-cyanoketones, in which hydrogen bonding cooperatively contributes to substrate activation and stereodifferentiation. Most of the reactions described here generate stereogenic tetrasubstituted carbons or quaternary carbons, noteworthy accomplishments even with modern synthetic methods. Several reactions have been incorporated into the asymmetric synthesis of therapeutics (or their candidate molecules) such as Tamiflu, AS-3201 (ranirestat), GRL-06579A, and ritodrine, illustrating the usefuln...