The influence of the degree of dispersion of a nickel–zinc ferrite powder of a Ni0.7Zn0.3Fe2O4 composition on its magnetic properties has been considered. The material has been synthesized using the ceramic technology with preliminary mechanical activation of precursors. The degree of dispersion has been varied using different modes of its dry grinding in a ball mill. The patterns of the changes in saturation magnetization and the coercive force as a function of grinding modes and a specific surface area of the ferrite powder have been established. The changes in the pattern of the magnetic phase transition in the region of the Curie temperature of materials with different degrees of dispersion have been determined.