A self-assembly
of clay nanotubes in functional arrays for the
production of organized organic/inorganic heterostructures is described.
These 50-nm-diameter natural alumosilicate nanotubes are biocompatible.
Halloysite allows for 10–20 wt % chemical/drug loading into
the inner lumen, and it gives an extended release for days and months
(anticorrosion, self-healing, flame-retardant, antifouling, and antibacterial
composites). The structured surfaces of the oriented nanotube micropatterns
enhance interactions with biological cells, improving their capture
and inducing differentiation in stem cells. An encapsulation of the
cells with halloysite enables control of their growth and proliferation.
This approach was also developed for spill petroleum bioremediation
as a synergistic process with Pickering oil emulsification. We produced
2–5-nm-diameter particles (Au, Ag, Pt, Co, Ru, Cu–Ni,
Fe3O4, ZrO2, and CdS) selectively
inside or outside the aluminosilicate clay nanotubes. The catalytic
hydrogenation of benzene and phenol, hydrogen production, impacts
of the metal core–shell architecture, the metal particle size,
and the seeding density were optimized for high-efficiency processes,
exceeding the competitive industrial formulations. These core–shell
mesocatalysts are based on a safe and cheap natural clay nanomaterial
and may be scaled up for industrial applications.