Catalytic tar removal is one of the main challenges restricting the successful commercialization of biomass gasification. Hot gas cleaning using a heterogeneous catalyst is one of the methods used to remove tar. In order to economically remove tar, an efficient low-cost catalyst should be applied. Biomass char has the potential to be such a catalyst. In this work, the reactor parameters that affect the conversion of a model tar component “naphthalene” were investigated employing an in situ thermogravimetric analysis of a fixed bed of biomass char. The following reactor and catalyst parameters were investigated: bed temperature (750 to 900 °C), gas residence time in the char bed (0.4 to 2.4 s), char particle size (500 to 1700 μm), feed naphthalene concentration, feed gas composition (CO, CO2, H2O, H2, CH4, naphthalene, and N2), char properties, and char precursor. It was found that the biomass char has a high activity for naphthalene conversion. However, the catalytic performance of the biomass char was affected by the gasification reactions that consumed its carbon, and the coke deposition that reduced its activity. Furthermore, high ash and iron contents enhanced char activity. The results of this work will be used in the design of a process that uses biomass char as an auto-generated catalyst in the gasification process.