As other natural iron-bearing minerals, schorl could be taken as an effective iron source for degradation of organic pollutants by mineral-catalyzed Fenton-like system. In our present study, the schorl-catalyzed Fenton-like system has been successfully developed for discoloration of an active commercial dye, Rhodamine B (RhB), in an aqueous solution. Through a number of batch discoloration experiments under various conditions, it was found that the reactivity of the system increased by, respectively, increasing schorl dosage, temperature, hydrogen peroxide starting concentration and by decreasing the pH. Over 90% of discoloration ratio could be gained in less than 30 min, and nearly 70% of total organic carbon (TOC) could be removed in less than 200 min. And, the schorl catalyst could be repeatedly used at least ten times, still with high catalytic activity. Comparative studies indicated that the RhB discoloration ratios were much higher in presence of schorl and H 2 O 2 than those in presence of schorl or H 2 O 2 only, which suggested that the schorl-catalyzed Fenton-like reaction governed the RhB discoloration process. The content of Fe ion leaching in the solution was also measured using inductively coupling plasma-atomic emission spectra (ICP-AES). A mechanism proposed herein suggested that adsorption and Fenton-like reaction (heterogeneous and homogeneous) were responsible for the discoloration of RhB.schorl, Rhodamine B, discoloration, Fenton-like reaction