As the world pledges
to significantly cut carbon emissions, the
demand for sustainable and clean energy has now become more important
than ever. This includes both production and storage of energy carriers,
a majority of which involve catalytic reactions. This article reviews
recent developments of homogeneous catalysts in emerging applications
of sustainable energy. The most important focus has been on hydrogen
storage as several efficient homogeneous catalysts have been reported
recently for (de)hydrogenative transformations promising to the hydrogen
economy. Another direction that has been extensively covered in this
review is that of the methanol economy. Homogeneous catalysts investigated
for the production of methanol from CO
2
, CO, and HCOOH
have been discussed in detail. Moreover, catalytic processes for the
production of conventional fuels (higher alkanes such as diesel, wax)
from biomass or lower alkanes have also been discussed. A section
has also been dedicated to the production of ethylene glycol from
CO and H
2
using homogeneous catalysts. Well-defined transition
metal complexes, in particular, pincer complexes, have been discussed
in more detail due to their high activity and well-studied mechanisms.