Catalytic hydrotreatment is a promising technology to convert pyrolysis liquids into intermediates with improved properties. Here, we report a catalyst screening study on the catalytic hydrotreatment of pyrolysis liquids using bi-and tri-metallic nickel-based catalysts in a batch autoclave (initial hydrogen pressure of 140 bar, 350°C, 4 h). The catalysts are characterized by a high nickel metal loading (41 to 57 wt%), promoted by Cu, Pd, Mo, and/or combination thereof, in a SiO 2 , SiO 2 -ZrO 2 , or SiO 2 -Al 2 O 3 matrix. The hydrotreatment results were compared with a benchmark Ru/C catalyst. The results revealed that the monometallic Ni catalyst is the least active and that particularly the use of Mo as the promoter is favored when considering activity and product properties. For Mo promotion, a product oil with improved properties viz. the highest H/C molar ratio and the lowest coking tendency was obtained. A drawback when using Mo as the promoter is the relatively high methane yield, which is close to that for Ru/C. 1 H, 13 C-NMR, heteronuclear single quantum coherence (HSQC), and two-dimensional gas chromatography (GC × GC) of the product oils reveal that representative component classes of the sugar fraction of pyrolysis liquids like carbonyl compounds (aldehydes and ketones and carbohydrates) are converted to a large extent. The pyrolytic lignin fraction is less reactive, though some degree of hydrocracking is observed.