The application of electric field promotes benzene oxidation significantly over Pd/CoxCey catalysts. For 1% Pd loading catalysts, the complete oxidation of benzene can be realized at 175 °C with an electric field under an input current of 3 mA, 79 °C lower than the temperature demanded for complete benzene conversion without electric field. The introduction of electric field can save Pd loading in the catalysts while maintaining high benzene conversion. The characterization experiments showed that CeO2 reduction was accelerated with electric field and created more active oxygen, promoting the formation of active sites on the catalyst surface. The OH removal ability of PdO was enhanced by forming CoO(OH) species, which can easily dehydroxylate since the reduction of Co3+ was promoted by the electric field. The optimized Ce/Co ratio is a balance between oxygen availability and OH removal ability.