Novel complexes of cobalt(II) with sulfonated derivatives of phthalocyanines are synthesized. The influence of the sulfonated group's number in peripheral substituent on solubility of macrocycle and ability to form ordered structures in solution is showed. Transition from H-aggregates to monomeric phthalocyanine structures and sandwich-type dimers was found during formation of metallophthalocyanine complexes with 1,4-diazabicyclo[2.2.2]octane. The catalytic activity of metallophthalocyanines was studied on the model of Merox process.