A DFT-based description is given of the CO2/epoxide copolymerization with a catalyst system consisting of metal (chromium, iron, titanium, aluminum)-salen complexes (salen = N,N'-bis(3,5-di-tert-butylsalicyliden-1,6-diaminophenyl) in combination with either chloride, acetate, or dimethylamino pyridine (DMAP) as external nucleophile. Calculations indicate that initiation proceeds through nucleophilic attack at a metal-coordinated epoxide, and the most likely propagation reaction is a bimolecular process in which a metal-bound nucleophile attacks a metal-bound epoxide. Carbon dioxide insertion occurs at a single metal center and is most likely the rate-determining step at low pressure. The prevalent chain terminating/degradation-the so-called backbiting, a reaction leading to formation of cyclic carbonate from the polymer chain-would involve attack of a carbonate nucleophile rather than an alkoxide at the last unit of the growing chain. The backbiting of a free carbonato chain end is particularly efficient. Anion dissociation from six-coordinate aluminum is appreciably easier than from chromium-salen complexes, indicating the reason why in the former case cyclic carbonate is the sole product. Experimental data were gathered for a series of chromium-, aluminum-, iron-, and zinc-salen complexes, which were used in combination with external nucleophiles like DMAP and mainly (tetraalkyl ammonium) chloride/acetate. Aluminum complexes transform PO (propylene oxide) and CO2 to give exclusively propylene carbonate. This is explained by rapid carbonate anion dissociation from a six-coordinate complex and cyclic formation. CO2 insertion or nucleophilic attack of an external nucleophile at a coordinated epoxide (at higher CO2 pressure) are the rate-determining steps. Catalysis with [Cr(salen)(acetate/chloride)] complexes leads to the formation of both cyclic carbonate and polypropylene carbonate with various quantities of ether linkages. The dependence of the activity and selectivity on the CO2 pressure, added nucleophile, reaction temperature, and catalyst concentration is complex. A mechanistic description for the chromium-salen catalysis is proposed comprising a multistep and multicenter reaction cycle. PO and CO2 were also treated with mixtures of aluminum- and chromium-salen complexes to yield unexpected ratios of polypropylene carbonate and cyclic propylene carbonate.