Persistent and mobile organic compounds (PMOCs) are highly soluble in water, thereby posing a threat to water resource quality. Currently, there are no methods that can accurately quantify guanidine derivative PMOCs, other than 1,3-diphenylguanidine (DPG) and cyanoguanidine (CG), in aqueous media. In this study, we developed a quantitation method that combines solid-phase extraction and liquid chromatography (LC)-tandem mass spectrometry to detect seven guanidine derivatives in aquatic environments and applied it to environmental water samples. Five LC columns were examined, and among them, a hydrophilic interaction liquid chromatography column was chosen owing to its suitable instrument detection limit and retention factor. Method precision was assessed using seven replicate analyses of river water. The corresponding analyte recoveries ranged from 73 to 137% (coefficient of variation = 2.1–5.8%). DPG and CG were detected in ultrapure water samples at levels up to 0.69 and 150 ng L−1, respectively; DPG and CG levels up to 44 and 2600 ng L−1, respectively, were detected in lake water, river water, sewage effluent, and tap water sampled in Western Japan. This is the first reported detection of DPG in the surface water of Japan, revealing that DPG and CG are ubiquitous compounds in aquatic environments. Moreover, this is the first study to detect 1-(o-tolyl)biguanide and N,N′′′-1,6-hexanediylbis(N′-cyanoguanidine) in water. This study provides a foundation for further research on the distribution, fate, and emission source of these pollutants, which is critical to maintain high water quality and to determine regulatory limits for these pollutants.
Graphical Abstract