In this study, we investigated the phytochemical compositions and the associated anti‐inflammatory activity of coffee leaf fractions prepared by sequential solvent extraction using high‐performance liquid chromatography–orbitrap‐tandem mass spectrometry (HPLC–orbitrap‐MS/MS) combined with network pharmacology. The results showed that the ethyl acetate fraction (EAC‐L) had the highest nitric oxide (NO), ABTS, and DPPH free radical scavenging abilities due to the higher concentrations of mangiferin, rutin, 3,5‐dicaffeoylquinic acid (3,5‐diCQA), and 4,5‐diCQA. The extraction solvents had the greatest impact on the anti‐inflammatory activity of coffee leaf fractions, whereas the processing method had the most significant effect on the antioxidant activity of these fractions. Untargeted metabolomics analysis using HPLC–orbitrap‐MS/MS indicated that palmitic acid, 3,4‐dihydroxybenzaldehyde, and caffeic acid may be involved in the anti‐inflammatory activity of EAC‐L fraction obtained from fresh coffee leaves. On the other hand, processed coffee leaf fraction exhibited anti‐inflammatory activity that was attributed to the presence of 9S,13R‐12‐oxophytodienoic acid, pinocembrin, and quercetin, which have high degree values associated with the inflammation network. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment of network pharmacology analysis showed that these 35 differential compounds in the coffee leaf fractions affect cell transcription, apoptosis, phosphorylation, NO synthesis, phosphatidylinositide 3‐kinases‐protein kinase B (PI3K‐Akt) signaling pathway, focal adhesion, hypoxia‐inducible factor‐1, hepatitis, cancer, and so on. This result indicated that coffee leaf extract may also function as an inhibitor for inflammation‐related cancers. The findings of our research are valuable in guiding the extraction of anti‐inflammatory components from coffee leaves.