A scalable, dehydrogenative, and electrochemical synthesis of novel highly fluorinated orthoesters is reported. This protocol provides easy and direct access to a wide variety of derivatives, using a very simple electrolysis setup. These compounds are surprisingly robust towards base and acid with an unusual high lipophilicity, making them interesting motifs for potentially active compounds in medicinal chemistry or agro applications. The use of electricity enables a safe and environmentally benign chemical transformation as only electrons serve as oxidants.