2022
DOI: 10.48550/arxiv.2203.15383
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Category Guided Attention Network for Brain Tumor Segmentation in MRI

Jiangyun Li,
Hong Yu,
Chen Chen
et al.

Abstract: Objective: Magnetic resonance imaging (MRI) has been widely used for the analysis and diagnosis of brain diseases. Accurate and automatic brain tumor segmentation is of paramount importance for radiation treatment. However, low tissue contrast in tumor regions makes it a challenging task.Approach: We propose a novel segmentation network named Category Guided Attention U-Net (CGA U-Net). In this model, we design a Supervised Attention Module (SAM) based on the attention mechanism, which can capture more accurat… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?