2021
DOI: 10.36227/techrxiv.15173058
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Category-Oriented Self-Learning Graph Embedding for Efficient Image Compact Representation

Abstract: As one of the ways to acquire efficient image compact representation, graph embedding (GE) based manifold learning has been widely developed over the last two decades. Good graph embedding depends on the construction of graphs concerning intra-class compactness and inter-class separability, which are crucial indicators of the effectiveness of a model in generating discriminative features. Unsupervised approaches are intended to reveal the data structure information from a local or global perspective, but the r… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?