Over the past few decades, researchers have shown sustained and robust investment in exploring methods for hyperspectral image classification (HSIC). The utilization of hyperspectral imagery (HSI) for crop classification in agricultural areas has been widely demonstrated for its feasibility, flexibility, and cost-effectiveness. However, numerous coexisting issues in agricultural scenarios, such as limited annotated samples, uneven distribution of crops, and mixed cropping, could not be explored insightfully in the mainstream datasets. The limitations within these impractical datasets have severely restricted the widespread application of HSIC methods in agricultural scenarios. A benchmark dataset named Heilongjiang (HLJ) for HSIC is introduced in this paper, which is designed for large-scale crop classification. For practical applications, the HLJ dataset covers a wide range of genuine agricultural regions in Heilongjiang Province; it provides rich spectral diversity enriched through two images from diverse time periods and vast geographical areas with intercropped multiple crops. Simultaneously, considering the urgent demand of deep learning models, the two images in the HLJ dataset have 319,685 and 318,942 annotated samples, along with 151 and 149 spectral bands, respectively. To validate the suitability of the HLJ dataset as a baseline dataset for HSIC, we employed eight classical classification models in fundamental experiments on the HLJ dataset. Most of the methods achieved an overall accuracy of more than 80% with 10% of the labeled samples used for training. Furthermore, the advantages of the HLJ dataset and the impact of real-world factors on experimental results are comprehensively elucidated. The comprehensive baseline experimental evaluation and analysis affirm the research potential of the HLJ dataset as a large-scale crop classification dataset.