Polymeric materials, due to their excellent physicochemical properties and versatility found
applicability in multiples areas, including biomaterials used in tissue regeneration, prosthetics (hip,
artificial valves), medical devices, controlled drug delivery systems, etc. Medical devices and their
applications are very important in modern medicine and the need to develop new materials with improved
properties or to improve the existent materials is increasing every day. Numerous reasearches
are activated in this domain in order to obtain materials/surfaces that does not have drawbacks such as
structural failure, calcifications, infections or thrombosis. One of the most used material is
poly(vinylchloride) (PVC) due to its unique properties, availability and low cost. The most common
method used for obtaining tubular devices that meet the requirements of medical use is the surface
modification of polymers without changing their physical and mechanical properties, in bulk. PVC is a
hydrophobic polymer and therefore many research studies were conducted in order to increase the hydrophilicity
of the surface by chemical modification in order to improve biocompatibility, to enhance
wettability, reduce friction or to make lubricious or antimicrobial coatings. Surface modification of
PVC can be achieved by several strategies, in only one step or, in some cases, in two or more steps by
applying several techniques consecutively to obtain the desired modification / performances. The most
common processes used for modifying the surface of PVC devices are: plasma treatment, corona discharge,
chemical grafting, electric discharge, vapour deposition of metals, flame treatment, direct
chemical modification (oxidation, hydrolysis, etc.) or even some physical modification of the roughness
of the surface.