Background, aim, and scope From the beginning of the twentieth century until the 1990s, energy in Upper Lusatia, Saxony in Eastern Germany was produced at power plants that burnt lignite coals. As a result, alkaline fly ash and aerosols from the combustion of brown coal have accumulated in adjacent areas that are partly under forestry. We ask the question, "how have these atmospheric depositions of fly ash influenced the soil physical properties (bulk density, particle density, saturated hydraulic conductivity, pore size distribution, and water repellency) of forest floor horizons?" Materials and methods The experimental sites represented typical soil types and stands of the sylviculturally used areas in the region of Upper Lusatia. Three forest sites were located close to the emission sources, where high amounts of fly ashes accumulated, and three control sites were without fly ash enrichment. Pore size distribution, saturated hydraulic conductivity, and bulk density were examined with undisturbed samples (metal cylinder 100 cm³). Disturbed samples were used for the characterization of particle density, texture, and water repellency (Wilhelmy plate method). Additionally, the carbon content was determined. Scanning electron microscopy was used to show fly ash enrichment. Results The enrichment of mineral fly ash particles could be proven for sites close to the emission source. Using scanning electron microscopy, spherical fly ash particles could be identified. Total quantities of persistent fly ash enrichment amounted to approximately 150-280 Mg ha -1 . The enrichment of fly ash affected the soil-physical characteristics. Close to the emission source (sandy fly ashes), particle density, air capacity, and saturated hydraulic conductivity were significantly increased, whereas the plant available water was significantly reduced. With increasing distance from the emission source (silty fly ashes or no ash enrichment), air capacity and saturated hydraulic conductivity were reduced, while an increase of plant available water was observed. Furthermore, the forest floor horizons close to the emission source were characterized by significantly reduced water repellency due to the dominance of hydrophilic mineral fly ash particles. Discussion Fly ash deposition in Upper Lusatia must be considered as relevant for properties of forest soils. Mean particle density was significantly higher at sites with fly ash accumulation. This indicates the admixture of mineral particles. While bulk densities were not noticeably influenced, the increase of particle density and the dominance of sandy to coarse silty particles close to the emission sources cause an increase in total porosity, air capacity, and a relative reduction of plant available water. Hollows in spherical fly ash particles might contribute to the meso-and macropores. Due to the admixture of hydrophilic fly ash, the enriched forest floor horizons feature a distinct increase in potential wettability, which coincides with a higher pore and, hence, nutrient and contaminant ac...