“…It will be demonstrated that the SO model accounts very well for absorption spectra, emission properties, and excited-state dynamics, some of its conclusions being qualitatively different from the spinfree approach. [Re(imH)(CO) 3 (phen)] + represents a broad class of Re I tricarbonyl-diimine complexes [21][22][23], which show very rich photophysics and photochemistry [10,14,15,24] and engage in a range of photonic applications such as photosensitizers and phototriggers of electron-transfer reactions [11,[25][26][27][28][29], photocatalysts of CO 2 reduction [30][31][32], phosphorescent labels and probes of biomolecules [33][34][35][36], sensors [37,38], molecular switches [39][40][41][42] and OLED emitters [43], or probes of ps-ns dynamics of solvents, proteins or supramolecular hosts [11,24,50,51,[63][64][65]. The chosen example [Re(imH)(CO) 3 (phen)] + [44] not only epitomizes the salient features of Re I carbonyl-diimine photophysics but also has a prominent position amongst Re-based photosensitizers because of its ability to trigger photoinduced electron transfer and relaxation dynamics in Re-labeled proteins [11,25,[44]…”