The oxidation of 2,6-di-tert-butylphenol by dioxygen has been investigated in aqueous micellar aggregates of cetyltrimethylammonium bromide (CTAB) using tetrasodium phthalocyaninatocobalt(II) tetrasulfonate (CoPcTsNa 4 ) as catalyst. The CTAB/CoPcTsNa 4 system showed enhanced catalytic activity in the oxidation of 2,6-di-tert-butylphenol compared to that observed in the oxidation reaction in the absence of CTAB. 2,6-Di-tert-butyl-1,4-benzoquinone and 3,5,3',5'-tetra-tert-butyl-4,4-diphenoquinone were identified as reaction products. The initial rate constants of auto-oxidation reaction was found to increase with increasing the pH range from 7.0 to 13.0. The rate constants k obs of auto-oxidation reaction showed linear dependence on catalyst concentration. The rate of auto-oxidation reaction was found to fit a Michealis-Menten kinetic model for the saturation of catalyst sites with increasing 2,6-di-tert-butylphenol concentration and dioxygen pressure. Tetrasodium phthalocyaninatocobalt(II) tetrasulfonate in aqueous micellar solution of CTAB was found to be mainly monomeric.