Cationic polymer microparticles have received much attention especially in the field of biotechnology, such that their analysis and separation have become important. So far, the separation of cationic polymer particles with different size using CE has not been achieved and the cationic particles migrated as if they are negatively charged, probably due to electrostatic interaction between capillary wall and cationic polymer particles. In this paper, the separation of cationic polymer microparticles by CE was investigated in detail. The separation of cationic particles with different size was achieved in CE by taking into account the interaction between sample particles and the inner surface of capillaries. By employing a poly(vinyl alcohol)-coated capillary, a better size separation of amine-modified latex particles was obtained compared to a Polybrene-coated capillary. It was elucidated that the composition, concentration, and pH of the background solution were also important factors in the separation of colloidal particles to avoid the surface adsorption and the characteristic aggregation of polymer particles. Furthermore, the CE analysis was applied to the characterization of cationic protein-immobilized particles.