Ionizing radiation can induce some kinds of reactions, other than polymerization, such as dimerization, oligomerization, curing, and grafting. These reactions occur through a regular radical chain causing growth of polymer by three steps, namely, initiation, propagation, and termination. To understand ionizing radiation-induced polymerization, the water radiolysis must be taken into consideration. This chapter explores the mechanism of water molecules radiolysis paying especial attention to the basic regularities of solvent radicals' interaction with the polymer molecules for forming the crosslinked polymer. Water radiolysis is the main engine of the polymerization processes, especially the "freeradical polymerization." The mechanisms of the free-radical polymerization and crosslinking will be discussed in detail later. Since different polymers respond differently to radiation, it is useful to quantify the response, namely in terms of crosslinking and chain scission. A parameter called the G-value is frequently used for this purpose. It represents the chemical yield of crosslinks, scissions and double bonds, etc. For the crosslinked polymer, the crosslinking density increases with increasing the radiation dose, this is reflected by the swelling degree of the polymer while being immersed in a compatible solvent. If crosslinking predominates, the crosslinking density increases and the extent of swelling decreases. If chain scission predominates, the opposite occurs. A further detailed discussion of these aspects is presented throughout this chapter.