2006
DOI: 10.1016/j.na.2005.06.017
|View full text |Cite
|
Sign up to set email alerts
|

Cauchy problem of the generalized double dispersion equation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
70
0
1

Year Published

2007
2007
2024
2024

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 93 publications
(71 citation statements)
references
References 8 publications
0
70
0
1
Order By: Relevance
“…denotes the space of continuous functions with continuous derivatives up to order m with respect to x and order n with respect to t. The existence of a classical (local or global) solution with the smoothness prescribed above is proved in the 1D case in [14], while for the multi-dimensional case similar results for local solutions are established in [15].…”
Section: By the Linear Change Of Variablesmentioning
confidence: 83%
See 3 more Smart Citations
“…denotes the space of continuous functions with continuous derivatives up to order m with respect to x and order n with respect to t. The existence of a classical (local or global) solution with the smoothness prescribed above is proved in the 1D case in [14], while for the multi-dimensional case similar results for local solutions are established in [15].…”
Section: By the Linear Change Of Variablesmentioning
confidence: 83%
“…d = 1). The existence (both local and global in time) and uniqueness of weak and strong solutions in Sobolev spaces for the 1D problem are treated in [8,13,14]. Sufficient conditions for blow-up of the solution are given in [6,13].…”
Section: Consider the Cauchy Problem Of The Boussinesq Type Equation mentioning
confidence: 99%
See 2 more Smart Citations
“…Это уравнение исследовалось в работах [3], [4]. В работах [5]- [8] рассматривалась начально-краевая задача и за-дача Коши для обобщенного уравнения с двумя дисперсиями, которое включает уравнение (3) как частный случай. Симметрийные редукции и точные решения имеют немало различных важных приложений в контексте дифференциальных уравнений.…”
Section: Introductionunclassified