2024
DOI: 10.1049/cit2.12311
|View full text |Cite
|
Sign up to set email alerts
|

Causal inference for out‐of‐distribution recognition via sample balancing

Yuqing Wang,
Xiangxian Li,
Yannan Liu
et al.

Abstract: Image classification algorithms are commonly based on the Independent and Identically Distribution (i.i.d.) assumption, but in practice, the Out‐Of‐Distribution (OOD) problem widely exists, that is, the contexts of images in the model predicting are usually unseen during training. In this case, existing models trained under the i.i.d. assumption are limiting generalisation. Causal inference is an important method to learn the causal associations which are invariant across different environments, thus improving… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 44 publications
0
0
0
Order By: Relevance