2023
DOI: 10.1002/sim.9706
|View full text |Cite
|
Sign up to set email alerts
|

Causal inference in survival analysis under deterministic missingness of confounders in register data

Abstract: Long‐term register data offer unique opportunities to explore causal effects of treatments on time‐to‐event outcomes, in well‐characterized populations with minimum loss of follow‐up. However, the structure of the data may pose methodological challenges. Motivated by the Swedish Renal Registry and estimation of survival differences for renal replacement therapies, we focus on the particular case when an important confounder is not recorded in the early period of the register, so that the entry date to the regi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?