Inaccuracies in property valuation is a global problem. This could be attributed to the adoption of valuation approaches, with the hedonic pricing model (HPM) being an example, that are inaccurate and unreliable. As evidenced in the literature, the HPM approach has gained wide acceptance among real estate researchers, despite its shortcomings. Therefore, the present study set out to evaluate the predictive accuracy of HPM in comparison with the artificial neural network (ANN) technique in property valuation. Residential property transaction data were collected from registered real estate firms domiciled in the Lagos metropolis, Nigeria, and were fitted into the ANN model and HPM. The results showed that the ANN technique outperformed the HPM approach, in terms of accuracy in predicting property values with mean absolute percentage error (MAPE) values of 15.94 percent and 38.23 percent, respectively. The findings demonstrate the efficacy of the ANN technique in property valuation, and if all the preconditions of property value modeling are met, the ANN technique is a reliable valuation approach that could be used by both real estate researchers and professionals.