Abstract-In this paper, we consider a binary energy harvesting transmitter that wishes to control the amount of side information the receiver can obtain about its energy harvests. Specifically, we study state amplification and state masking, which define the maximum and minimum amount of state information conveyed to the receiver for a given message rate, respectively. For an independent and identically distributed energy harvesting process, we first find the amplification and masking regions for a transmitter without a battery and a transmitter with an infinite battery. Next, we find inner bounds for these regions for a unit-sized battery at the transmitter using two different encoding schemes, using instantaneous Shannon strategies and using a scheme based on the equivalent timing channel introduced in our previous work. We observe that the former provides better state amplification, while the latter provides better state masking.