We have previously derived the effect of soft graviton modes on the quantum state of de Sitter using spontaneously broken asymptotic symmetries. In the present paper we reinterpret this effect in terms of particle production and relate the quantum states with and without soft modes by means of Bogoliubov transformations.This also enables us to address the much discussed issues regarding the observability of infrared effects in de Sitter from a new perspective. While it is commonly agreed that infrared effects are not visible to a single sub-horizon observer at late times, we argue that the question is less trivial for a patient observer who has lived long enough to have a record of the state before the soft mode was created. Though classically there is no obstruction to measuring this effect locally, we give several indications that quantum mechanical uncertainties may censor the effect. We then apply our methods to find a non-perturbative description of the quantum state pertaining to the Page time of de Sitter, and derive with these new methods the probability distribution for the local quantum states of de Sitter and slow-roll inflation in the presence of long modes. Finally, we use this to formulate a precise criterion for the existence of eternal inflation in general classes of slow-roll inflation. DNRF90