2020 International Conference on Technologies and Applications of Artificial Intelligence (TAAI) 2020
DOI: 10.1109/taai51410.2020.00045
|View full text |Cite
|
Sign up to set email alerts
|

Causality Model for Text Data with a Hierarchical Topic Structure

Abstract: This study describes a method for constructing a causality model from text data, such as review data. Topic modeling is useful to find these evaluation factors from text data. The method based on hierarchical latent Dirichlet allocation is useful because it automatically constructs relationships among topics. However, the depth of each topic in a hierarchical structure is the same even if the contents differ for each topic. Accordingly, the method can generate less important topics that are not worth analyzing… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 17 publications
0
0
0
Order By: Relevance