The frequency of unprecedented extreme precipitation events is increasing, and consequently, catastrophic debris flows occur in regions worldwide. Rapid velocity and long-runout distances of debris flow induce massive loss of life and damage to infrastructure. Despite extensive research, understanding the initiation mechanisms and defining early warning thresholds for extreme-precipitation-induced debris flows remain a challenge. Due to the nonavailability of extreme events in the past, statistical models cannot determine thresholds from historical datasets. Here, we develop a numerical model to analyze the initiation and runout of extreme-precipitation-induced runoff-generated debris flows and derive the Intensity-Duration (ID) rainfall threshold. We choose the catastrophic debris flow on 6 August 2020 in Pettimudi, Kerala, India, for our analysis. Our model satisfactorily predicts the accumulation thickness (7 m to 8 m) and occurrence time of debris flow compared to the benchmark. Results reveal that the debris flow was rapid, traveling with a maximum velocity of 9 m/s for more than 9 minutes. The ID rainfall threshold defined for the event suggests earlier thresholds are not valid for debris flow triggered by extreme precipitation. The methodology we develop in this study is helpful to derive ID rainfall thresholds for debris flows without historical data.