The fate of matter when decreasing the temperature at constant pressure is that of passing from gas to liquid and, subsequently, from liquid to crystal. However, a class of materials can exist in an amorphous phase below the melting temperature. On cooling such materials, a glass is formed; that is, a material with the rigidity of a solid but exhibiting no long-range order. The study of the thermodynamics and dynamics of glass-forming systems is the subject of continuous research. Within the wide variety of glass formers, an important sub-class is represented by glass forming polymers. The presence of chain connectivity and, in some cases, conformational disorder are unfavourable factors from the point of view of crystallization. Furthermore, many of them, such as amorphous thermoplastics, thermosets and rubbers, are widely employed in many applications. In this review, the peculiarities of the thermodynamics and dynamics of glass-forming polymers are discussed, with particular emphasis on those topics currently the subject of debate. In particular, the following aspects will be reviewed in the present work: (i) the connection between the pronounced slowing down of glassy dynamics on cooling towards the glass transition temperature (Tg) and the thermodynamics; and, (ii) the fate of the dynamics and thermodynamics below Tg. Both aspects are reviewed in light of the possible presence of a singularity at a finite temperature with diverging relaxation time and zero configurational entropy. In this context, the specificity of glass-forming polymers is emphasized.