Background: Stroke is a major health concern and a leading cause of mortality and morbidity. We and other groups have documented that hyperbaric oxygen preconditioning could significantly alleviate neuronal damage in ischemia‒reperfusion models through various mechanisms. However, we found that some of the subjects did not benefit from preconditioning with hyperbaric oxygen. The preconditioning phenomenon is similar to vaccination, in which the endogenous survival system is activated to fight against further injuries. However, with vaccine inoculations, we could test for specific antibodies against the pathogens to determine if the vaccination was successful. Likewise, this experiment was carried out to explore a biomarker that can reveal the effectiveness of the preconditioning before neuronal injury occurs. Methods: Middle cerebral artery occlusion (MCAO) was used to induce focal cerebral ischemia-reperfusion injury. 2D-DIGE-MALDI-TOF-MS/MS proteomic technique was employed to screen the differentially expressed proteins in the serum of rats among the control (Con) group (MCAO model without hyperbaric oxygen (HBO) preconditioning), hyperbaric oxygen protective (HBOP) group (in which the infarct volume decreased after HBO preconditioning vs. Con), and hyperbaric oxygen nonprotective (HBOU) group (in which the infarct volume remained the same or even larger after HBO preconditioning vs. Con). Candidate biomarkers were confirmed by western blot and enzyme linked immunosorbent assay (ELISA), and the relationship between the biomarkers and the prognosis of cerebral injury was further validated. Results: Among the 15 differentially expressed protein spots detected in the HBOP group by Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), 3 spots corresponding to 3 different proteins (haptoglobin, serum albumin, and haemopexin) products were identified by MALDI-TOF-MS/MS. Serum albumin and haemopexin were upregulated, and haptoglobin was downregulated in the HBOP group (p < 0.05 vs. Con and HBOU groups). After the western blot study, only the changes in haemopexin were validated and exhibited similar changes in subjects from the HBOP group in accordance with MALDI-TOF-MS/MS proteomic analysis and enzyme linked immunosorbent assay (ELISA) analysis. The serum level of the hemopexin (HPX) at 2 h after HBO preconditioning was correlated with the infarct volume ratio after MCAO. Conclusions: Haemopexin may be developed as a predictive biomarker that indicated the effectiveness of a preconditioning strategy against cerebral ischaemic injury.